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ABSTRACT

In this report we studied human brain activity in the case of bistable visual perception. We proposed a new
approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and
evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its
analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decision-
making process has the special patterns on the EEG data.
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1. INTRODUCTION

The problem of studying nonlinear processes in brain neural network at perception of “ambiguous” (also known
as bi- and multistable) images is characterized by a number of aspects for understanding visual recognition of
objects and decision-making processes. It should be noted that the studies of ambiguous images perception are
carrying out very active nowadays. In some sense, such objects are good models either for visual perception of
surrounding world in general or decision making. Images of this type have been research objects for psychologists
for a long time.1,2 Recently, ambiguous images awoke interest of physicists and mathematicians.3 Despite high
attention of researchers, the main mechanism of image interpretation are not completely understood. Nowadays,
it is well known that perception is a result of nonlinear processes which take place in distributed neural network
of occipital, periental and frontal regions of brain cortex.2,4 For a long enough observation of an ambiguous
object the subject demonstrates individual effect of perception switching, e.g., the Rubin’s vase is percepted
alternately as two faces or as a vase.1 According to existing hypothesis the perception switching when observing
ambiguous images is connected with intrinsic noise of neural cells (the background neural activity as a result
of randomly generated discharges).5–8 Therefore, the neural background activity (“internal noise” of a neural
network) plays the key role for ambiguous images interpretation as well as for other cases of decision makings.
From the viewpoint of such approach, perception of ambiguous object can be described and modelled in terms of
simple stochastic processes like Weiner’s dynamics.9–13 It is clear that description and prediction of such decision
making process open wide perspectives for understanding, prediction and possible correction of behavior of a
complex dynamical system including stochastic component, e.g., human.

Mechanisms of ambiguous perception of bistable images are thoroughly investigated in the last decade, and
among the most popular bistable images are Rubin vase, Mach bands, Rorschach test, Boring’s old woman/young
woman illusion, etc.1 However, the Necker cube remains the classical ambiguous figure with reversible perspec-
tive14 that represents a contour image corresponding to the parallel projection of nodes and edges of the cube
onto the plane, disregarding the rules of perspective, named after the Swiss mathematician and physicist Louis
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Figure 1. Examples of distinct Necker cube images with different wireframe contrasts characterized by control parameter I.

Albert Necker (1730-1804). During perception this figure spontaneously flips: one volumetric projection is re-
placed by another. In our work the advantage of the Necker cube is that its perception can be changed by
varying several parameters, such as angle of displacement between planes, thickness of outlines, filling of sides
with color or shade.15 Figure 1 shows various examples of the Necker cube image with varying parameter I (the
brightness of the cube faces converging in the right upper corner of the home, respectively, the brightness of the
faces of the left inner corner of the cube is defined as (1 − I)).

From physical and mathematical point of view, visual perception of the Necker cube comprises two metastable
states of perception each characterized by quasistability and last from seconds to tens of seconds. Intervals of
stable perception with short duration are absent, and one of the perceived images usually dominates over relatively
long period of time. The distribution of intervals of dominance in each image has a stochastic nature with
gamma probability distribution.1,5 Bifurcation analysis and catastrophe theory showed that the shift between
two states of perception of ambiguous object linked with the intensity of intrinsic individually predetermined
“cognitive noise” caused by spontaneous activity of neurons.3 Nowadays the world neurophysiological and
neurophysiological literature provides two opposing conceptions about the neural mechanisms of perception
metastable images with the ascending (“bottom-up”) and descending control (“top-down”) of perception.1,9 The
first, ascending control (bottom-up influence) is passive process involving adaptive mechanisms of perception and
antagonistic interactions in the visual system (reciprocal inhibition of visual neurons).16 Long-term observation
of metastable image causes a decrease of activity of neurons responsible for the perception of one of the possible
configurations (due to acquired tolerance or adaptation to stimulus). When neuronal activity decreases below
the critical level, neurons responsible for the perception of the second (competitor) configuration become active,
resulting to inversion of image perception. The second, descending (top-down influence) control is active control
resulting from cognitive processes, such as hypothesis testing, problem solving and voluntary attention. This view
received strong experimental support1 and the most powerful arguments supported significant effect of training
and experience to control perception of metastable images.9,16 It is known that the preliminary instruction of
subjects about different interpretations of perceived image predetermines the outcomes of perception.5

It was found that the shift (inversion) of perception of ambiguous images was not spontaneously, but con-
trolled by associative brain areas integrating sensory and non-sensory information and coordinating behavior. In
practice, inversion of the perceived image may occur spontaneously or under the influence of subjective factors
(division of attention, mood fluctuations).3,17 It is known that the ability for alternative perception of bistable
and multistable image can be changed with training, and it is lost after organic lesions in frontal cortex.8 The
perception of ambiguous images is influences by the objective factors (such as external stimuli - auditory, visual
stimuli, changes of images’ parameters), as well as subjective factors (such as the ability to focus attention,
emotional state, etc.).
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It is fundamentally important to create objective paradigm for data processing in cognitive research, because
solely application of traditional neurophysiology methods, such as expert estimations and simple measures of
signal’s amplitude, may oversimplify our understanding of the process therefore fine and short-lasting process
might be overlooked. Development and further application of standardized methods in neurophysiological exper-
iments, including data acquisition, evaluation, analysis and processing of results, in already recorded data as well
as in real time, have important practical application and it is still open field in research activity. International
research practice in cognitive studies readily engages modeling of cognitive and neurophysiological processes with
the aid of nonlinear dynamics and radiophysics methods.18,18,19

2. METHODS

2.1 Experiment

In present paper we studied brain noise intensity during decision-making in bistable visual perception. In our
experiment as a stimulus we used a set of images based on a well-known bistable visual model – Necker cube.
Necker cube is a simple image of a cube with transparent faces and visible ribs; the spectator with normal
perception treats Necker cube as a 3d-object thanks to specific position of cube’s ribs. Visual bistability consists
in the fact that this 3d-object can be treated as oriented in two different ways, especially if different ribs of
Necker cube are drawn with different intensity.

Demonstration of the Necker cube images with different wireframe contrast within 0.2-0.7 sec with background
interruption within 2.5-3.5 sec. Participant will press left or right key to fix the projection being observed at each
demonstration. In this experiment, unconscious decision on ambiguous image interpretation will be investigated.
Between subsequent demonstrations of different Necker cube images other abstract pictures without any marks
fixing eyesight from the set of sufficiently bright background images were exhibited (about 1000-1500 ms). Using
of background images allows neutralizing possible effect of the previous Necker cube image. The whole experiment
lasted about 40 min for each patient. During experiment we showed these pictures with Necker cube in random
order (about 100 repeats foe each picture) and recorded EEG brain activity. As a tool for EEG recording
we used electroencephalograph-recorder Encephalan-EEGR-19/26 with multiple EEG channels and two-button
input device. To study EEGs the monopolar method of registration and the classic ten-twenty electrode system
were used.

Mathematical model for the theoretical analysis of experimental data was developed using the approach
described in3 where bistable potential has been applied to describe the situation of choice of ambiguous image
projection. Taking into account an effect of cognitive noise on the visual perception, stochastic differential
equation leading to the Fokker-Plank equation was be obtained.

In our research we conventionally called Necker cube’s orientations as “left” and “right” according to the
position of imaginable front face of cube. In experiment we used 8 – 16 different images of Necker cube with
distinctive intensity of several key ribs. Intensity of ribs was selected in some specific way to have an influence
on bistable perception of the spectator. For example, some images had an intensity distribution that more likely
would be interpreted as “left”, other images were “right”–oriented; also one of the images had symmetrical
intensity distribution.

After the experiment we analyzed obtained data. We had multi-channeled EEG recordings with different
markers: “imgN” type – marker that shows the moment of presentation of an image, where N – code name of an
image with particular intensity distribution; “LClick” or “RClick” type – marker that shows the moment when
patient pressed one of the buttons on input device, L for left button and R for right. So for each image of Necker
cube we had two cases: when it was interpreted as “left” and when interpreted as “right”; we analyzed each of the
cases distinctively because we proposed some difference in EEG structure caused by different visual perception.
We analyzed time-frequency structure of EEG recordings between presentation of an image (“imgN”–marker) and
response (“LClick/RClick”–marker) and a brief time interval after it. Complete duration of analyzing interval
is about 2–3 s). As an instrument for EEG analysis we chose continuous wavelet transform.
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2.2 Wavelet-based methods

In our work we used continuous wavelet transform (CWT)20,21 for time-frequency analysis of oscillatory patterns
in EEG. CWT is a convolution of investigated signal x(t) (EEG signal in our case) and some set of basic
functions ϕs,τ :

W (x, τ) =

∫

∞

−∞

x(t)ϕ∗s,τdt (1)

Each basic function from this set can be obtained from one function ϕ0, so-called mother wavelet, by following
transform:

ϕ(s, τ) =
1√
s
ϕ0

(

t − τ

s

)

(2)

In equation (2) ϕ0 — mother wavelet, s — time scale, which determines extension or compression of initial
mother function, τ — time shift of wavelet transform.

There are a lot of different mother wavelets that find a use according to the problems of the current study.
In present work we used CWT with Morlet mother wavelet with parameter ω0 = 2π.

ϕ0(η) = π−
1

4 ejω0ηe−
η
2

2 (3)

According to papers22,23 Morlet wavelet is one of the most effective in analysis of complex experimental signals
of biological nature (including EEG) because of its high time-frequency resolution.

In present work intrinsic frequency dynamics was investigated using “skeletons” of wavelet surfaces, that were
constructed based on the previously described procedure.23 First, the momentary wavelet energy distribution
Ei(fs, t0) was constructed for some time moment t0.

Ei(fs, t0) = |W (fs, t0)|2 (4)

Then the function Ei(fs, t0) was examined for the presence of local maximum Emax. If several local maxima
Emax,k were detected in Ei(fs, t0), then the highest maximum was selected and its frequency was considered
as dominant frequency of oscillatory pattern at given time moment t0. In order to construct full ”skeleton” of
wavelet surface the procedure described above was repeated consequently for all points in time series of given
EEG signal.

3. RESULTS

In signal analysis with CWT amplitude wavelet surfaces (or wavelet spectra) are usually used. Wavelet spectra
are 3d - surfaces of continuous wavelet transform energy; they provide common information about time-frequency
structure of the signal. In our work we constructed wavelet spectra for short parts of EEG signal between markers
and analyzed EEG signal structure. Another important part of present research was investigation of intrinsic
time-frequency dynamics in EEG patterns associated with bistable visual perception. This part or research was
performed with help of more advanced technique based on CWT – construction of “skeletons”. “Skeletons”
are lines of local maxima on wavelet surfaces. “Skeletons” were constructed by searching of local maxima of
wavelet energy in fixed time moment t by changing frequency f . “Skeleton” shows only few most significant
frequency components in each time moment. In our work we constructed “skeletons” of wavelet surfaces for
short parts of EEG signal between markers and analyzed EEG signal structure. We averaged wavelet spectra
and “skeletons” for each case of Necker cube image and button pressed (for example, only “image3” and only
left button pressed). We analyzed these averaged distributions to find trends in bistable visual perception. The
concept of these method was based on well-known method of evoked potentials.

Figures 2 and 3 show the results of the study data registered on the occipital O1 and O2 of the volunteers.
The wavelet analysis demonstrated the patterns presence in the EEG recording, almost forming a spindle on time
series, but well observed on the CWT amplitude wavelet surfaces. Note that at the time of the decision-making
process there is a well-defined pattern oscillating at a frequency close to the alpha-rhythm (about 10 Hz). Then,
after the decision doing, this oscillatory activity stops, replaced by expressed low-frequency component (around
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Figure 2. Examples of EEG recordings, wavelet spectra and “skeletons”(marked as red) during observation of Necker
cubes with different intensities (I = 0.15 – “left” and I = 0.85 – ‘right”).

2.5 Hz), which may be perceived as relaxing. Figure 2 shows clearly that when choosing a definitely “left” cube
the maximum activity is observed in EEG of the abduction O1, and to select the “right” of the cube — in EEG
of the abduction of O2.

Figure 3 shows brain activity by observing a more complex object — the cube perceived essentially ambiguous.
Note that in this case the choice of the volunteer realized the image as a “left” immediately, but in the beginning
— erroneously pressed the “right” button. This case is more complex, high–amplitude characterized by activity
and leads on both strong alpha–component and after the selection.

4. CONCLUSIONS

The present work is devoted to the research activity of the human brain on the EEG data during perception of
ambiguous objects. A new approach based on the CWT to the study of EEG data occipital leads demonstrates
characteristic patterns associated with the choice of one or another variant perception, as well as the subsequent
decay of the activity of choice and may rest the brain. Further research will go towards greater formalization
of the experimental conditions to eliminate the influence of, for example, leading the eye of man or the envi-
ronment conditions. There will also be aimed at finding the correspondence between the cognitive noise used in
mathematical models, and observed on EEG patterns.
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Figure 3. Example of EEG recordings, wavelet spectra and “skeletons”(marked as red) during observation of ambiguous
Necker cube with different intensities (I = 0.64).
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