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In order to classify different human brain states related to visual perception of ambiguous

images, we use an artificial neural network (ANN) to analyze multichannel EEG. The

classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in

classifying EEG patterns corresponding to two different interpretations of the Necker

cube. The important feature of our classifier is that trained on one subject it can be used

for the classification of EEG traces of other subjects. This result suggests the existence

of common features in the EEG structure associated with distinct interpretations of

bistable objects. We firmly believe that the significance of our results is not limited to

visual perception of the Necker cube images; the proposed experimental approach and

developed computational technique based on ANN can also be applied to study and

classify different brain states using neurophysiological data recordings. This may give

new directions for future research in the field of cognitive and pathological brain activity,

and for the development of brain-computer interfaces.

Keywords: brain, ambiguous image, multistability, EEG, artificial neuronal network, brain states recognition

1. INTRODUCTION

The brain is likely the most convoluted and enigmatic research object, attracting the burning
interest of the broad scientific community in diverse areas of science and technology, including
neurophysiology, medicine, engineering, physics, and mathematics (Wolf, 2005; Bick and
Rabinovich, 2009; Chavez et al., 2010; van Luijtelaar et al., 2011; Bear et al., 2015; Hramov et al.,
2015). One of the important problems in the field of brain research is the cognitive brain function
during visual perception. For a long time, this problem has attracted a lot of attention of various
researchers, especially in connection with such important tasks as object recognition (Martin, 2007;
Müler et al., 2008; Simanova et al., 2010; Isik et al., 2014) and decisionmaking (Heekeren et al., 2008;
Wang, 2008, 2012). Nowadays, these tasks are of great practical importance for the development of
novel communication, computer technologies, and robotics.

Visual perception, object recognition, and decision-making processes in human brain are often
studied with the help of ambiguous visual stimuli, also known as bistable or multistable) images
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(Schwartz et al., 2012; Cao et al., 2014). Different interpretations
of a bistable image (Leopold and Logothetis, 1999; Blake
and Logothetis, 2002; Pisarchik et al., 2014, 2015) are tightly
connected with the problem of categorical perception in
humans (Etcoff and Magee, 1992) and non-human primates
(Freedman et al., 2001; Liu and Jagadeesh, 2008). Among
popular examples of bistable images are Rubin vase, Mach bands,
Rorschach test, Boring’s old woman/young woman illusion, and
Necker cube. For a long time, ambiguous images have been
research objects for psychologists (Leopold and Logothetis, 1999;
Sterzer et al., 2009). Recently, such images awoke a growing
interest of physicists and mathematicians to study stochastic
perception models using noise to convert multistable systems
into metastable ones (Pisarchik et al., 2014, 2015; Runnova et al.,
2016; Bashkirtseva and Ryashko, 2017). Although the underlying
mechanism of image recognition is not yet well understood, the
metastable visual perception is known to engage a distributed
network of occipital, parietal, and frontal cortical areas (Tong
et al., 2006; Sterzer et al., 2009).

When a subject observes an ambiguous object for a sufficient
length of time, he shows individual features of alternative
switching between different percepts, e.g., the Rubin vase is
alternately perceived as two faces and a vase (Leopold and
Logothetis, 1999); the Necker cube can be interpreted as
a left-oriented or a right-oriented cube (Borsellino et al.,
1972). According to existing hypothesis, the switches in
perception are caused by stochastic processes in the brain
neural network due to spontaneous neural activity: random
generation of membrane potentials and random synaptic
connections (Merk and Schnakenberg, 2002; Moreno-Bote
et al., 2007; Gigante et al., 2009; Huguet et al., 2014). These
random neural background activity plays a crucial role in the
interpretation of ambiguous images and other decision-making
tasks. Following this hypothesis, perception of ambiguous objects
can be described by simple stochastic models, like Weiner
dynamics (Aks and Sprott, 2003; Ratcliff and Smith, 2004;
Heekeren et al., 2008; Wang, 2012; Pearson et al., 2014; Runnova
et al., 2016). It is clear that the brain states description and
classification during the decision-making process open wide
perspectives for a deeper understanding of the mechanisms
responsible for visual spatial perception in the human brain with
a strong stochastic component, and create also the possibility for
perception control (Pisarchik et al., 2015).

One of the most appropriate techniques for studying
brain states is based on the analysis of multichannel electro
encephalographic (EEG) signals (Cooper et al., 1980; Tatum,
2014). In the context of bistable perception, the analysis of the
EEG data allows one to reveal specific features of the perceptive
process. In particular, Kornmeier et al. (2011) discovered
two types of EEG signatures, stimulus-related (low-level) and
percept-related (high-level) during perception of the Necker
cube. The percept-related features associated with the Necker
cube reversals were found in gamma (Strüber et al., 2001) and
delta (Mathes et al., 2006) frequency bands. Thus, different brain
states manifest themselves as specific oscillatory patterns in EEG
signals characterized by a particular time-frequency structure.
This gives us the possibility to detect and classify the brain states
by processing the EEG data (Donner et al., 2009).

Among various approaches proposed for the classification
of oscillatory patterns observed in the EEG recordings (Garrett
et al., 2003; Dias et al., 2007; Siuly et al., 2016), some
are worth mentioning such as discriminant analysis methods
(which were very popular in the 1960s) (Niedermeyer and
Lopes da Silva, 2005; Hasan et al., 2015), independent
component analysis (Makeig et al., 1996; Ungureanu et al.,
2004; Hobson and Hillebrand, 2006) (often used for finding
and eliminating biased artifacts in EEG signals; Jung et al.,
2000), short-time Fourier transform (Gotman et al., 1973),
and wavelet-based methods (Hramov et al., 2015), including
techniques of adaptive mother wavelets (Sitnikova et al., 2009;
Nazimov et al., 2013) and methods based on estimation of
event-related synchronization/desynchronization (Morash et al.,
2008). Nowadays, another classification technique known as
artificial neural network (ANN) (Bishop, 2006; Haykin, 2008)
is widely used in computer science, biophysics, deep learning,
econometrics, etc. (Bishop, 1996; Goodfellow et al., 2016; Zhou
et al., 2017). This method inspired by biological interconnected
neurons is based on nonlinear models of neural units
(artificial neurons). The ANNs can be either hardware-based
(neurons represented by physical components) or software-
based (computer models), and can use a variety of topologies
and learning algorithms. Hardware ANNs are more accurate
in mimicking the performance of real neural networks and
have a higher performance speed than software-based ANNs.
Due to these features hardware ANNs should be better for
real-time implementation, but they heavily rely on a specific
hardware configuration. In contrast, software ANNs have a more
simple and therefore a more flexible structure and can be easily
implemented in practice (Baptista et al., 2013).

Many types of architectures of software-based ANNs were
developed to solve different relevant tasks. In particular,
convolutional neural networks (CNN) were applied for image
recognition and also for pattern recognition in EEG signals
(Hajinoroozi et al., 2016). CNNs are very efficient in revealing
specific features in unstructured data, like images, audio and
video. However, in spite of their excellent properties in pattern
recognition and classification, CNNs require a relatively large
number of varied parameters for each task and most of them can
only be tuned empirically. Therefore, in such a specific task as the
classification of undetermined types of EEG patterns, it is more
convenient to use simpler and hence more flexible ANNs, such
as multilayer perceptron (MLP) (Haselsteiner and Pfutscheller,
2000).

In this paper, we propose using the MLP for the classification
of the human EEG recorded during visual perception of
ambiguous images, the classical example being the Necker cube,
named after the Swiss mathematician and physicist Louis Albert
Necker (1730–1804) (Necker, 1832). This cube represents a
contour image with reversible perspective corresponding to the
parallel projection of nodes and edges of the cube onto the plane,
disregarding the rules of perspective. During the perception
of this figure, the person observes spontaneous flips, i.e., one
volumetric projection is replaced by another. An important
advantage of the Necker cube over many other ambiguous
images, is that its ambiguity can be digitalized and controlled by
varying the cube parameters, such as the angle of displacement
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between planes, thickness of outlines, filling of sides with color
or shade (Taeed et al., 1988). We prove that the ANN technique
enables us to distinguish with high precision between particular
EEG features caused by different cube orientations. Moreover,
when we apply ANN in a cross-subject mode, we discover the
existence of universal patterns in EEG, common for all subjects.
Unlike previous studies on the use of artificial intelligence for
classification of EEG traces (Ma et al., 2017; Quitadamo et al.,
2017), where the maximal precision was achieved by subject-
oriented adjustment, our approach, along with high-quality
classification, gives some common information about the brain’s
response to the bistable stimuli. Here, we discuss the possibility of
the ANN to reveal cognitive brain properties of visual perception
and compare the ANN with other approaches, often used for
such purposes. Along with ANN, we also apply event related
potentials (ERP) and wavelet-based approaches to detect features
of the brain states, associated with different interpretations
of the Necker cube. We demonstrate the advantages of the
ANN in revealing more pronounced differences in brain states
among all subjects. Finally, we expect our results to be useful
in interdisciplinary fundamental research and brain-computer
interfaces.

The structure of the paper is as follows. In section 2 we
describe materials and methods used in our neurophysiological
experiments on EEG recordings, as well as subjects and
experimental procedure. The results of data processing and
classification of brain states using ANN during visual perception
of ambiguous images, are given in section 3 and discussed in
section 4. Finally, the main conclusion is given in section 5.

2. MATERIALS AND METHODS

2.1. Experimental Setup and Subjects
Subjects were facing a display screen on which ambiguous images
were displayed as visual stimulus (see Figure 1). As an ambiguous
image, we used the Necker cube (Necker, 1832), a flat 2D-image
which due to optical illusion looks like a cube with transparent
faces and visible ribs. Visual bistability consists in the fact that
this 3D-object can be treated as oriented in two different ways,
especially if different ribs of the Necker cube are drawn with
different intensity. Specifically, the contrast of the three middle
lines centered in the left middle corner, g ∈ [0, 1], was used as a
control parameter of the displayed images. The boundary values
g = 1 and g = 0 correspond, respectively, to 0 (black) and
255 (white) pixels’ luminance of the middle lines, using the 8-bit
grayscale palette for visual stimulus presentation. Therefore, we
can define a contrast parameter as g = b/255, where b is the
brightness level of the middle lines in the used 8-bit grayscale
palette. The contrast of three middle lines centered in the right
middle corner was set to (1 − g), and the normalized contrast of
the six visible outer cube edges was fixed to 1. The Necker cube
images with ribes of different intensities g were created using a
standard graphics software.

The multi-channel EEG was recorded at a 250-Hz sampling
rate with P = 19 electrodes and two reference electrodes
placed at standard positions of the 10–20 international system
(Niedermeyer and da Silva, 2004). To register the EEG data we

used cup adhesive Ag/AgCl electrodes placed on the “10–20”
paste. Immediately before the experiment started, we performed
all necessary procedures to increase the conductivity of the
skin and reduce its resistance using abrasive “NuPrep” gel. The
impedances were monitored after the electrodes were installed,
and measured during the experiments. Usually, the impedance
values varied within the 2–5 k� interval. The ground electrode
N was located in front of the head at the Fpz electrode
location. The EEG signals were filtered by a band-pass filter
with cut-off points at 1 Hz (HP) and 100 Hz (LP) and a
50-Hz Notch filter. The electroencephalograph “Encephalan–
EEGR–19/26” (Medicom MTD company, Taganrog, Russian
Federation) with multiple EEG channels and two-button input
device (keypad), was used for amplification and analog-to-
digital conversion of the EEG signals. Electroencephalograph
“Encephalan–EEG–19/26” possesses the registration certificate
of the Federal Service for Supervision in Health Care No.
FCP 2007/00124 of 07.11.2014 and the European Certificate
CE 538571 of the British Standards Institute (BSI). Preliminary
signal processing was provided by the original software for EEG
registration artifact suppression. To exclude artifacts associated
with eye movement we used the electrooculogram (EOG) signals
from two pairs of electrodes placed on the eye socket, above (or
below) and at eye level. The EOG signals were filtered with the
same band-pass filter and registered by the “Encephalan–EEGR–
19/26” equipment.

Machine learning algorithms were implemented with
MATLAB. To demonstrate a grayscale stimulus, we used a
24′′BenQ LCDmonitor with a spatial resolution of 1, 920×1, 080
pixels and a refresh rate of 60 Hz. For the presentation of
visual stimuli we used the system “ABC–stimulus” included
in the Medicom MTD software for electroencephalograph
“Encephalan–EEGR–19/26”. The “ABC–stimulus” software
provided highly precise time synchronization of the EEG
recording and of the stimulus presentation based on a special
software and an additional video sensor attached to the monitor.
Each Necker cube image drawn by black and gray lines was
located at the center of the computer screen on a white
background. A red dot drawn at the center of the Necker cube
was used to attract the attention of subjects and prevent possible
perception shifts due to eye movements while observing the
image. The subjects were located at a distance of 70–80 cm from
the monitor with a visual angle of approximately 0.25 rad. The
Necker cube size on the monitor was 14.2 cm.

The experimental studies were performed in accordance to
Ethical Standards (2000) and approved by the local research
Ethics Committee of the Yuri Gagarin State Technical University
of Saratov. Twelve healthy subjects from a group of unpaid
volunteers, male and female, between the ages of 20 and 45 with
normal or corrected-to-normal visual acuity participated in the
experiments. Written informed consent was obtained from all
participants.

2.2. Experimental Design
Every subject completed a single recording session to avoid
possible adaptation and brain adjustment when solving the task.
During the experiment, seven Necker cube images (M = 7) with
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FIGURE 1 | Examples of distinct Necker cube images with different wireframe contrasts characterized by control parameter g. The left-hand image with g = 0

corresponds to the fully left-oriented cube, while the right-hand image with g = 1 to the fully right-oriented cube. Each subject was instructed to fix his/her sight at the

central red dot.

different wireframe contrasts, i.e., with seven different values of
the control parameter gi = 0.15, 0.3, 0.4, 0.5, 0.6, 0.7, 0.85, were
randomly presented to each subject. All participants were aware
about the two possible cube interpretations and able to see both.
When observing the Necker cube, the mean duration of a visual
percept is known to vary from one second to several minutes
for different subjects and stimulus conditions (Pastukhov et al.,
2013), whereas the mean response time is rather consistent
and varies only by a few hundred ms among all of subjects
and stimulus conditions (Carpenter, 2012). In literature, the
experimentally measured typical duration of one of the percepts
of the Necker cube was found to be approximately 1 s (Merk and
Schnakenberg, 2002).

We carried out two sets of experiments. In the first set, all
participants were instructed to press either a left or a right
key on the two-button keypad according to their first visual
impression on the cube orientation (left-oriented or right-
oriented), as shown in Figure 2A. In the second set shown
Figure 2B, the subjects did not need to press the buttons. In
order to exclude the effect of motor reaction after the image
presentation, the experimenter asked the participant to interpret
the cube orientation to be either “left” or “right” and then voice
her/his interpretation.

It is known that when visual stimuli are subsequently
presented to the observer, the effect of stabilization of visual
perception takes place (Leopold et al., 2002). This effect consists
in persistent visual perception between subsequent presentations
of images. Even though several model-based approaches (Wilson,
2007) have been proposed to explain this phenomenon, the truth
is that the underlying mechanism of the stabilization effect is
not yet well understood. To diminish the stabilization effect, we
diverted the subject’s attention by exhibiting abstract pictures for
about γ = 2−3 s in the first set and η = 5−7 s in the second set,
between subsequent demonstrations of the Necker cube images,
in order to guarantee as much as possible the independence of
two consecutive Necker cube images. Also, we sought to fix the
first impression and avoid switches between two possible percepts
during the image demonstration by imposing a short exhibition
time τi = 0.8− 1.3 s.

It should be noted that the duration of the stimuli
presentations, τi, as well as inter-stimulus intervals (ISIs), γi (for

button response) and ηi (for voice response), were randomly
chosen from the defined above time intervals. The ISIs were
chosen to be sufficiently large to diminish the influence of the
stabilization effect. The ISIs for voice response, ηi, were chosen to
be larger than γi in order to have enough time to ask the subject
about his/her interpretation of the cube orientation.

The schematic representations of two experimental designs
are given in Figure 2. In both experiments we started with the
recording of the background EEG activity when the subject
was in a relaxed state (BGA in Figure 2). The duration of the
background recording was 600 s. We finished the experiments
by recording again the background EEG activity (BGA) during
300 s.

First Set of Experiments (with Key Pressing)
The following protocol was used at each run of the first set of
experiments, i.e., when a key was pressed.

After recording the background EEG activity, we began the
main part of the experiment demonstrating the Necker cubes
with different values of the control parameter g. This stage
consisted of three steps.

1. The visual stimulus (the Necker cube with randomly chosen
contrast parameter gj) was displayed on the screen during time
interval τi randomly chosen between 0.8 and 1.3 s.

2. After observing the Necker cube on the screen, the subject
analyzed its position and pressed either left or right button
on the keypad depending on his/her first visual impression to
indicate the cube orientation. We did not regulate the method
of keystrokes; the subjects usually pressed the left or right
key by index fingers or thumbs of the left or right hand,
respectively.

3. Between subsequent demonstrations of the Necker cubes,
abstract pictures (AP) were exhibited during time γi randomly
chosen in the 2–3 s interval to divert attention and make the
perception of the next image independent of the previous one.

4. Steps (1–3) were repeated N = 400 times.

During the data acquisition for each subject lasted about
40 min, 400 Necker cube images were presented. The time
markers of the cube and abstract image presentations (start
and finish), type of image (parameter g), the moments when
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FIGURE 2 | Schematic representation of two sets of experiments. Interpretation of the Necker cube as left- or right-oriented by (A) pressing the corresponding button

on the keypad and (B) answering experimenter’s questions concerning the cube orientation. The blue upper arrows before and after every cube presentation bound

the epochs of durations τ1, τ2, . . . τN (τ = 0.8− 1.3 s, N = 400) when the cube with randomly chosen control parameter gj (j = 1, . . .M, M = 7) was presented to the

observer. The circles at the beginning and at the end of both sets of the experiments indicate time intervals during which the background EEG activity (BGA) was

recorded. The ovals indicate ISIs γ1, γ2, . . . γN (γ = 2− 3 s, N = 400) in the first and η1, η2, . . . γN (η = 5− 7 s, N = 200) in the second set of experiments, during

which abstract pictures (AP) were presented. In (A), the green lower arrows indicate the moments when the subject pressed either left or right button while interpreting

the Necker cube as left- or right-oriented. In (B), the green lower arrows indicate the moments when the experimenter asked the subject about her/his interpretation of

the cube orientation. The time interval between the end of the cube presentation and the moment when the experimenter asked the question was equal to S = 3 s.

The red brackets below the time axis indicate time intervals T of the EEG trials taken for the analysis by means of artificial neuronal networks.

the subject pressed a button on the keypad (left or right),
as well as the selection of the type of perception (left-
or right-oriented cube) were automatically recorded during
the experiment and saved in a special log-file for further
analysis.

Second Set of Experiments (with Voice response)
The second set of experiments was designed as follows. After
recording the background EEG activity, we entered to the main
part of the experiment demonstrating the Necker cubes with
different values of the control parameter g. This stage consisted
of four steps.

1. The visual stimuli (the Necker cube with randomly chosen
contrast parameter gj) were displayed on the screen during
time interval τi, randomly chosen between 0.8 and 1.3 s.

2. After observing the stimulus on the screen, the subject
analyzed its orientation and waited for the question of the
experimenter.

3. Between subsequent demonstrations of the stimuli (Necker
cubes), abstract pictures (AP) were exhibited during time ηi,
randomly chosen in the 5–7 s interval to divert attention and
make the perception of the next image independent of the
previous one.

4. S = 3 s after each Necker cube presentation, the experimenter
asked the subject about her/his first visual impression about
the cube orientation and according to his/her reply (“left” or
“right”) recorded the result.

5. Steps (1–4) were repeated N = 200 times.

As in the first experimental set, the duration of each data
acquisition in second set was also about 40 min. However, only
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N = 200 Necker cube images were presented, because in order
for the subject to communicate its perceptions, abstract pictures
showing time (η) had to be increased.

We want to emphasize that in the second set of experiments,
the motor reaction of subjects was avoided since they did not
need to press any key.

2.3. Preprocessing of the Experimental
EEG Data
Before teaching the ANN to obtain a classification function, the
preprocessing of the experimental EEG data was carried out.
First, we reduced large amplitude artifacts found in the frontal
cortex area, caused by eye blinks and movements. The form
of the oculomotor EEG artifacts is known to be dependent on
the type of eye movement in the horizontal/vertical direction in
the presence/absence of angular momentum, in accordance the
oculomotor artifacts can be classified into several types (Gratton
et al., 1983; Jung et al., 2000). Eye movements are accompanied
by changes in the electrical potential because the eyeball has
an electric dipole moment formed by the potential difference
between the retina and cornea of the eye (Jung et al., 2000; Ille
et al., 2001, 2002; Hoffmann and Falkenstein, 2008). EEG signals
recorded from subjects with open eyes can be represented as
a linear combination of signals of the brain electrical activity
and the interference caused by eye movements (Ille et al., 2001,
2002). It is a common practice to remove the interference
(extraocular artifacts) by using a mathematical transformation
of EEG and EOG signals with the method of Gram-Schmidt
orthogonalization (Cheney and Kincaid, 2009). Particularly, in
the experiments at hand the data from each electrode was
processed using EOG obtained by means of the Gram-Schmidt
orthogonalization procedure (Koronovskii et al., 2015).

Let xi(t) be the EEG signal of the i-th channel, cν(t) and ch(t)
are the EOG signals containing information about vertical and
horizontal eye movements. These signals can be represented by
the Gram-Schmidt orthogonalization procedure:

x′i(t) = xi(t)− c0ν(t)

t1+T
∫

t1

c0ν(t
′)xi(t

′)dt′, (1)

x̃i(t) = x′i(t)− c0h(t)

t1+T
∫

t1

c0h(t
′)x′i(t

′)dt′, (2)

where x̃i(t) is the signal after oculomotor artifacts filtration and
t ∈ [t1, t1 + T], where t1 is the starting time and T is the interval
duration. Signals c0ν(t) and c0

h
(t) are the normalized “reference”

EOG signals corresponding to the vertical and horizontal eye
movements, respectively (Ille et al., 2001; Joyce et al., 2004):

c0ν(t) =
cν(t)

||cν(t)||
, c0h(t) =

ch(t)

||ch(t)||
, (3)

where

||cv,h(t)|| =

√

√

√

√

√

t1+T
∫

t1

(

cv,h(t)
)2
dt. (4)

The orthogonalization procedure Equations (1–4) was
performed on the signals from all 19 registered EEG channels.
Figure 3 illustrates the application of the Gram-Schmidt
orthogonalization procedure to remove the oculomotor artifacts
caused by the horizontal and vertical movements of the
eyeballs as well as by blinking. Figures 3A–D presents the
initial EEG signals for different channels, clearly showing
that the eye movement artifacts were more pronounced in
the frontal channels than the occipital ones. Figures 3E–H

exhibits EEG signals for the same channels after the Gram-
Schmidt orthogonalization procedure. The comparison
of Figures 3A,B,E,F underlines that the Gram-Schmidt
orthogonalization method is an effective tool for removing
oculomotor artifacts. The overall behavior of the EEG signal after
applying the Gram-Schmidt procedure to remove oculomotor
artifacts does not exhibit significant changes from the original
form (cp. Figures 3D,H).

Single T-second duration trials corresponding to 250T
samples, according to the 250-Hz sampling frequency of the data
acquisition system “Encephalan-EEGR-19/26,” were extracted
from all EEG data sets of each subject. These single trials sp(t)
(p = 1, . . . P), where P is the number of channels of the EEG
recording, were chosen to start at each stimulus onset, i.e., at
the beginning of the presentation of each Necker cube with the
contrast parameter g, and ended T seconds after the stimulus
onset. These time intervals of T duration are marked by the
red brackets in Figure 2. So, we extracted the EEG signal for
further analysis during time intervals which directly correspond
to the processes of visual perception and decision-marking on
the left or right cube orientation. After that, all extracted trials
for every subject were sorted according to his/her impression
about the cube orientation (left or right key). Finally, the
recorded time series from each EEG electrode were scaled to the
interval [−1, 1].

Figure 4 demonstrates typical EEG trials of one of the
subjects from all 19 registered electrodes after the preprocessing
procedure in the first set of experiments, i.e., with key pressing.
The electrode positions are shown in the international 10–20
scheme on the top of the figure. These EEG traces of T = 1
s duration were recorded immediately after presentation of the
Necker cube with the contrast parameter g = 0.5. The traces in
the left and right panels correspond respectively to the left- and
right-oriented cubes. The trials of 12 subjects were used as initial
database to extract specific features from the time series using the
ANN time domain technique.

2.4. Architecture of Artificial Neural
Network and Description of Classification
Algorithm
An artificial neural network (ANN) consists of a number of
artificial neurons interconnected with each other by synaptic
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FIGURE 3 | Typical EEG fragments registered in frontal cortex (A,E) Fp1, (B,F) F3, (C,G) motor cortex C3, and (D,H) occipital cortex O1. (A–D) corresponds to

original registered EEG signals, (E–H) to the EEG signal after removing artifacts using the Gram-Schmidt procedure.

weights to form a net. Many possible ANN architectures can
be used for pattern recognition. For example, a spiking neural
network (SNN) simulates realistic neuronal behavior because it
takes into account main properties of neurons, such as spike-
timing-dependent plasticity. This type of ANN has proved to
be an effective tool for pattern recognition (Masquelier et al.,
2009; Grassia et al., 2017), but it is usually hardware-based
and requires specific software/hardware platforms. In this study,
we employ a class of ANN known as a multilayer perceptron
(MLP), since it does not require a specific hardware and shows
high capabilities while performing different computational tasks
including pattern recognition. Also, MLP is much easier for
practical implementation and therefore is widely used for many
applications including the classification problem (Duda andHart,
1973; Haselsteiner and Pfutscheller, 2000; Fontoura da and Cesar,
2001; Garrett et al., 2003; Dias et al., 2007; Hasan et al., 2015).

An important characteristic feature of the MLP is that a signal
propagates in a forward direction only (feedforward network)
from left to right on a layer-by-layer basis (Haykin, 2008). In
our case, the classification problem consists in the recognition of
two different brain states corresponding to the perception of the
bistable Necker cube as left-oriented or right-oriented.

Figure 5 shows the ANN architecture of MLP used in our
analysis for EEG signal classification. The ANN had input layer
IL, two hidden layers, HL1 and HL2, and output layer OL.

The input layer IL contained P = 19 inputs, one for each
of 19 EEG channels. For every p-th (p = 1, 2, ..., 19) input
we used the functional EEG signal sp(t) with 1-s duration (250
samples) from p-th channel registered for the case of left- or
right-oriented cube interpretation (the examples of input data
are shown Figure 4). The signal from each input was fed to
all computational nodes in the first hidden layer HL1 with H1

artificial neurons. The resulting output signal from HL1 entered
to the second hidden layerHL2withH2 neurons of the same type.
Finally, the output signal from HL2 entered to a single neuron
in the output layer OL. Since our classification problem was the
recognition of two brain states using the 19-channel EEG data
set, the ANN contained only one output neuron, which output
value should have classified the current brain state to either left-
or right-oriented cube interpretation.

The ANN evolution is described by the following
mathematical model (Yao, 1999)

uli(t) = Fl





Hl−1
∑

p=1

wl
piu

l−1
p (t)− θ li



 , (5)

where Hl is the number of neurons in the l-th layer (a layer with
l = 0 is supposed to be the input layer), uli(t) is the output
signal of the i-th neuron belonging to the l-th layer [u0i (t) being
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FIGURE 4 | Typical EEG trials of one subject after preprocessing, related to

two different interpretations of the Necker cube orientation with contrast

parameter g = 0.5, recorded from different electrodes during T = 1 s after

stimulus presentation. The top panel represents the international 10–20

scheme of P = 19 electrodes. The electrodes A1 and A2 are the reference

ones and N is the ground electrode.

the signals from analyzed EEG channels], Wl = {wl
pi} is the

weight matrix of the l-th layer of dimension (Hl−1 × Hl), and
wl
pi (p = 1, . . . ,Hl−1, i = 1, . . . ,Hl) are the synaptic weights of

input signals for the i-th neuron in the l-th layer,2l = {θ li } is the
threshold vector for neurons in the l-th layer, and

Fl(η) = f (η) =
1

1+ exp(−η)
(6)

is the nonlinear logistic activation function for neurons in the
hidden and output layers l = 1, 2, 3.

A class of recognized objects can be characterized by the mean
squared value of output signal u(t) = u31(t), as follows

y =

√

√

√

√

√

1

T

T
∫

0

(

u(t)
)2

dt. (7)

Since the input signals u0p(t) are trials sp(ti) (p = 1, . . . P, ti = i1t,
i = 1, . . .N) with the length T consisting of N = 250 samples
(T = 1 s,1t = T/N), Equation (7) can be rewritten in the form

y =

√

√

√

√

1

N

N
∑

i=1

(

u(ti)
)2
. (8)

For the left-oriented Necker cube perception, the mean squared
value of the output signal is supposed to be y ≥ 0.5 and for the
right-oriented cube y < 0.5.

The unknown matrices Wl and vectors 2l can be obtained
during the learning process byminimizing the classification error
criterion:

µ =

√

√

√

√

1

K

K
∑

k=1

(

dk − yk
)2
, (9)

where K is the total number of objects in the training set, yk
is the mean squared value of the output signal calculated for
the k-th object using Equation (8), dk is a desired output value
of yk which we wish the MLP to learn (dk = 1 corresponds
to the left-oriented cube perception and dk = 0 to the right-
oriented one). To find unknown parameters of ANN, we used
the Levenberg-Marquardt algorithm (LMA) (Strutz, 2016). By
differentiating the error criterion Equation (9) with respect to the
unknown parameters, the LMA method yields better results in
comparison with other optimization methods, but requires more
computational time to determine the unknown parameters. For
the learning process, we created a data set consisting of 70 single
trials with 1-s duration (250 samples) randomly selected from
EEG records obtained from one volunteer (see section 2.3). This
data set consisted of 35 trials for each orientation of the Necker
cube images with different contract parameters g. For more
reliable assessment of the result of ANN learning, we repeated
the training procedure for a total of a 1,000 learning cycles. As a
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FIGURE 5 | MLP architecture with two hidden layers in EEG signal classification. IL (l = 0) is the input layer, HL1 and HL2 are the first (l = 1) and second l = 2) hidden

layers, respectively, which nodes (artificial neurons) are characterized by nonlinear activation function given by Equation (6), and OL is the output layer (l = 3)

consisting of one artificial neuron with the same activation function. The number of inputs is H0 = P = 19, the numbers of nodes in the hidden layers are H1 = P and

H2 = 5, respectively, and the number of output nodes is H3 = 1.

consequence, we obtained 1,000 ANNs with different parameters
and different error classification values µ.

To estimate ambiguous images classification precision, we
calculated recognition accuracy ρ defined as

ρ =
Np

N
× 100%, (10)

where Np is the number of true classified cubes and N is the total
number of analyzed Necker cube images.

Finally, for further analysis we chose the ANN with the
smallest classification error µ characterized by the highest
accuracy ρ, to be the best ANN for classification. The procedure
of ANN learning was implemented for each volunteer in order to
find his/her optimal ANN topology with the highest recognition
accuracy.

2.5. Wavelet Analysis
The set of EEG signals was analyzed with the help of the
continuous wavelet transformation. For each m-th observation
of the Necker cube, the wavelet energy spectrum Emn (f , t) =

Wm
n (f , t)

2 was calculated for each EEG channel Xn(t) in the
frequency range f ∈ [1, 35] Hz and approximately 3-s
time interval, including 1-sec intervals before and after the
presentation. Here, Wm

n (f , t) is the complex-valued wavelet
coefficients calculated as (Hramov et al., 2015)

Wm
n (f , t) =

√

f

t+4/f
∫

t−4/f

Xn(t)ψ
∗(f , t)dt, (11)

where n = 1, ...,N is the EEG chanel number and “∗” defines the
complex conjugation. The mother wavelet function ψ(f , t) is the

Morlet wavelet, often used for the analysis of neurophysiological
data, defined as (Hramov et al., 2015)

ψ(f , t) = f 1/2π1/4ejω0f (t−t0)ef (t−t0)
2/2, (12)

where ω0 = 2π is the center frequency of the Morlet wavelet.
The obtained surfaces Emn (f , t) were calculated for M = 300
presentations (150 left-oriented and 150 right-oriented). The
values of Emn (f , t) were then averaged over occipital EEG signals
and over the number of presentations associated with left-
oriented and right-oriented cubes, separately. As the result, for
each subject the values 〈AL(f , t)〉 and 〈AR(f , t)〉 (subindices L and
R refer to left- and right-oriented cubes, respectively) reflected
the averaged time-frequency EEG structure associated with left-
and right-oriented cube interpretations. In order to qualitatively
characterize the difference between the averaged wavelet spectra,
we took into consideration coefficient 〈1A〉 defined as follows

〈1A〉 =

f2
∫

f1

t2
∫

t1

(

〈AL(f , t)〉 − 〈AR(f , t)〉
)

df dt. (13)

Here, the integration was performed over the frequency band 1–
35 Hz and the 3-s time interval including 1-s intervals before and
after the presentation.

3. RESULTS

3.1. Optimal Method Parameters and ANN
Topology
The most important point in our research was the choice of an
optimal ANN architecture to solve the classification problem.
Indeed, if the ANN architecture is too simple, i.e., the number
of neurons in hidden layers are inadequately small, the problem
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cannot be resolved. On the contrary, an excessively complex
ANN structure requires a very long learning time. Therefore, the
ANN topology (number of neurons in hidden layers) should be
optimized in order to obtain a reasonable accuracy in the EEG
classification problem during perception of ambiguous images.

In order to prove that the chosen ANN architecture was
optimal from the classification problem, we calculated the
dependencies of the recognition accuracy ρ on the number
of neurons in the hidden layers HL1 and HL2, shown in
Figures 6A,B. The accuracy ρ was averaged over all 1,000
training ANNs and over all participants. One can see that
the average accuracy grew rapidly as the number of neurons
in the hidden layers was increased. Specifically, the paired t-
test statistical analysis showed that the accuracy significantly
increased when the number of neurons in layers HL1 and HL2
went from 5 to 17 and from 2 to 5, respectively. A further
increment in the number of neurons did not lead to an additional
augmentation of the accuracy. According to this result, the
optimal parameters of the neural network were set to H1 = P =

19 and H2 = 5, respectively. One can see that for the chosen
parameters of the optimal ANN topology, the averaged accuracy
ρ exceeded 90%.

Another important issue was how to optimize the duration T
of EEG trials for maximum recognition accuracy. In the previous
work (Merk and Schnakenberg, 2002), the experimentally
measured typical duration of one of the percepts of the Necker
cube was found to be approximately 1 s. Here, we analyzed
the recognition accuracy ρ vs. the duration T of single EEG
trials used for classification. Figure 6C shows the dependence of
the recognition accuracy ρ on the duration T in the range of
[0.1, 2.25] s which corresponds to [25, 562] samples. The accuracy
ρ was averaged over all 1,000 training ANNs. One can see that
the accuracy reached its maximum in the range of [0.75, 1.75] s.
Therefore, we chose the duration of the EEG trials for further
analysis to be equal to T = 1 s. Also, it should be noted that, when
working in on-line regime (for example, for brain-computer
interfaces development; Bell et al., 2008; Maksimenko et al., 2017;
McFarland et al., 2017), the analysis of short time series will be
more preferable.

3.2. Recognition and Classification of
Multistable Brain States Using EEG Data
The development of our classification algorithm was started
with the training of ANNs for each subject who participated in
our experiments. The training data set was formed individually
for every participant and the optimal set of ANN parameters
Ŵr = (W1

r ,W
2
r ,W

3
r ,2

1
r ,2

2
r , θ

3
r ) was obtained for brain states

classification of subject r = 1, . . . 12.
Now, we will analyze the experimental data obtained in the

first set of experiments (with key pressing) (Figure 1A). The
recognition accuracy of the brain states classification during
visual perception of ambiguous images (left-/right-oriented
perception) for each of the 12 subjects, used for training ANN,
are shown in Figure 7. To analyze the classification accuracy we
took the part of the EEG which was not used for training, i.e.,
about 330 EEG trials of the registered brain states after image

demonstration. In this case, the mean classification accuracy for
all of the 12 subjects was close to 82.6 ± 10.7% (mean± S.D.)
(left blue column in the right panel of Figure 7). The recognition
accuracy for every subject, shown in the blue left columns in the
left panel of Figure 7, varied between 68 and 98% for different
subjects.

Practically the same recognition accuracy was calculated
by analyzing experimental data obtained in the second set of
experiments (without key pressing). The recognition accuracy
of the brain states classification for each of the 12 subjects is
shown in Figure 7 when the experimenter asked the subject of
how he/she interpreted the Necker cube, and then made the
corresponding note in the presentation software according to
the answer. As in the previous case, to analyze the recognition
accuracy we took the part of the EEG which was not used for
training, i.e., about 130 EEG trials of the registered brain states
after image demonstration. The mean classification accuracy for
all of the 12 subjects was close to 87% (right orange column in
the right panel in Figure 7), while the recognition accuracy for
every subject, shown in the right orange columns in the left panel
of Figure 7, varied between 71 and 98% for different subjects.

Thus, the comparison of the results for classification of the
brain states obtained in two different sets of experiments (with
and without key pressing) demonstrated almost identical results
for the same subject. The quality of recognition of the brain states
in the group of 12 subjects was at the level of 82–84% in both
sets of experiments. Therefore, we can conclude that the motor
reaction had no effect on the classification quality. In the next
stage of this study, we will discuss the results of the second set
only, i.e., the experiments which did not include real or imaginary
motor activity.

3.3. Cross-Subject Classification of Brain
States Using EEG Data of Different
Subjects
It is remarkable that one of the subjects (r = 4) demonstrated
very high recognition accuracy in classification of image
perception, which reached 98%. When we applied the ANN
trained on this subject to the analysis of the EEG data of other
subjects, we obtained much higher accuracy than when we used
the ANNs trained on their own data. These results are shown in
Figure 8. Using ANN with parameters Ŵ4 evaluated for subject
r = 4 the accuracy of classification was close to 95–98% for
almost all subjects, except for subjects r = 5 and r = 10,
who demonstrated ρ < 95%. Thus, we can conclude that the
features of EEG patterns corresponding to the perception of left-
or right-oriented cubes were typical for all subjects, and a single
ANN trained on the EEG data set of one person can classify with
high accuracy the corresponding brain states of a large group of
people.

Reasonable accuracy was obtained when classification was
made using ANN of any subject h. The results are shown
in Figure 9, where we plot the accuracy of cross-subject
classification of the EEG data of subject r = 1, . . . 12 using ANN
(with parameters Ŵh) trained on subject h = 1, . . . 12. One can
see that recognition accuracy falls below 60% only in one case.
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FIGURE 6 | Recognition accuracy as a function of the number of neurons (A) H1 in the first hidden layer (for H2 = 5) and (B) H2 in the second hidden layer (for

H1 = 19). We used single EEG trials with T = 1 s duration (250 samples). (C) Recognition accuracy as a function of duration T of single EEG trials. The accuracies

were averaged over all 1,000 training ANNs. All data was averaged all participants in the group. p-values were calculated via paired t-test. The boxes highlighted in

orange correspond to the optimal parameters.

FIGURE 7 | Recognition accuracy for all of the 12 subjects. The left-hand blue columns represent accuracy for each subject, using ANN trained on his/her own EEG

(h = r) obtained in the first set of experiments (with key pressing). The right-hand orange columns show accuracy for the second set of experiments (without key

pressing). The right panel represents the data averaged over all subjects under study.

Therefore, we can conclude that ANN trained on one subject gave
good results on brain states classification of all other subjects.
It should be noted that in Figure 9 data observed on diagonal
h = r corresponds to the recognition accuracy presented in
Figure 7. One can see that the subject h = 4 demonstrated the
best results on classification of the whole group under study. The
EEG patterns corresponding to the perception of left- or right-
oriented cubes of this particular subject exhibited themost typical
features making his EEG data set universal for identification and
classification of the brain states.

Finally, in Figure 10 we present the results in perception
recognition of left-oriented cubes (left blue columns) and
right-oriented cubes (right orange columns) separately, using
individual ANNs for each subject trained on his/her own EEG

data (cp. with Figure 7). We should note that the mean accuracy
in perception recognition of left-oriented (ρL = 82.0 ± 0.8)
and right-oriented (ρR = 84.0 ± 0.6) cubes was insignificant.
Besides, we observed that for several persons (r = 5, 8, 9, 12)
the recognition accuracies of the right-oriented and left-oriented
cubes perception differed by more than 10%. This fact can be
explained by individual physiological features of the subjects, for
example, ocular dominance or eye preference.

3.4. Results of Time-Frequency Analysis
To compare the classification efficiency when using ANN with
time-frequency analysis, we considered the wavelet spectra of
EEG trials corresponding to different interpretations of the
Necker cubes. The results of the wavelet transform analysis
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FIGURE 8 | Recognition accuracy using ANN trained on subject 4 (h = 4) for all of the 12 subjects. The right panel represents the data averaged over all subjects

under study.

FIGURE 9 | Accuracy of cross-subject classification of brain states of subject

r using ANN trained on EEG data of subject h.

applied to our data are shown in Figure 11. In Figures 11A,B one
can see the typical time-frequency structure of the EEG signals
corresponding, respectively, to the left-oriented (〈AL(f , t)〉) and
right-oriented (〈AR(f , t)〉) interpretations of the Necker cube.
The presented spectra were obtained by averaging over 150
interpretations for each type. It is seen that both cases were
characterized by the destruction of the α-rhythm associated with
the brain’s response to the visual stimuli (Klimesch, 2012; Ikkai
et al., 2016). Also, the presented time-frequency plots do not
show a significant difference in the time-frequency structure
associated with left- and right-oriented interpretations.

In order to qualitatively characterize the difference between
left- and right-oriented cube interpretations, coefficient 〈1A〉
was calculated for each of the 12 subjects. This coefficient

normalized to the averaged spectrum is shown in Figure 11C.
One can see that while some subjects demonstrated positive
values of 〈1A〉, others had negative 〈1A〉. As a result,
the difference in the time-frequency structure corresponding
to different interpretations is insignificant. Therefore, the
time-frequency analysis does not allow classification of the
EEG patterns with respect to left- and right-oriented cube
interpretations.

4. DISCUSSION

In the previous sections we demonstrated close to 95% accuracy
in classification of the EEG patterns during perception of
ambiguous images by means of the classifier based on the
artificial neuronal network. Now, we will discuss the important
issue about possible classification of the measured motor
preparation for a particular motor act (left/right key pressing).

Firstly, it should be noted that according to literature, EEG
classification of the real and imaginary movements of the hand
and, especially, fingers is a very complicated and non-trivial task
for untrained subjects (Blankertz et al., 2007). For example, it
has been demonstrated (Ferrante et al., 2015) that the existing
motor act classification algorithms when applied to untrained
participants do not always achieve good performances. However,
one can expect that ANN being trained on the data of one subject
will prove more successful at classification of the movement-
related EEG trails of other subjects.

Secondly, in order to finally prove our statement, we
performed additional cross-experiment analysis to exclude the
effect of the motor preparation. In the first set of experiments
and the preparation for the answer in the second set, we
mathematically processed the experimental data as follows. (i)
We used ANNs trained on the EEG data obtained in the first
experiments (with key pressing) for classification of EEG trials
recorded in the second experiments (without key pressing) for
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FIGURE 10 | Recognition accuracy for left-oriented (left blue columns), ρL, and right-oriented (right orange columns), ρR, Necker cube perception for all of the 12

subjects using ANN trained on the EEG of the same subject (h = r). The right panel represents the data averaged over all persons under study.

FIGURE 11 | (A,B) Typical wavelet power spectra averaged over 150 EEG

epochs corresponding to perception of Necker cubes (including 1-s intervals

before and after cube exhibition), associated with (A) left- and (B)

right-oriented cube interpretations. (C) Normalized comparison coefficient

between wavelet spectra corresponding to different interpretations of the

Necker cube, averaged over 150 epochs for each subject.

the same subject. (ii) Conversely, we applied ANNs trained on the

EEG data obtained in the second experiment for classification of
EEG trials recorded in the first experiment for the same subject.
In both cases the recognition accuracies of cross-experimental
classification was close to those obtained for each set of the

experiments. The quality of recognition of the brain states in the
group of all of the 12 subjects was at the level of ρ12 = 81.2 ±

11.2% for cross-classification case (i), and ρ21 = 87.1 ± 9.3%
for cross-classification case (ii). Therefore, we can conclude that
the motor act in the first set of experiments and the answer
preparation in the second set of experiments had no effect on
the classification results. The recognition accuracies ρ12 and ρ21
obtained with different experimental designs were close to each
other. This means that the proposed ANN-based method gives
correct results in classification of the perceptual brain states.

Another factor which could affect the validity of classification
is the effect of eye movement and eye position. According to
Einhäuser et al. (2004), the Necker cube is associated with
differences in eye position and eye movements. We should note
that it is mostly true in the case of prolonged observation. In
our experimental design we tried to minimize these effects by
choosing short time intervals for Necker cube demonstration
(1.0–1.5 s). During this short time the subject could get only the
first impression about the demonstrated object. Also, we drew
the red dot at the center of the Necker cube image to focus the
sight and prevent perception shifts due to the eyes movement. In
this context, we assume that the effect of perception shifts due to
eye-position was minimized in our studies.

From the analysis perspective of specific and universal features
of the EEG brain states, our findings are very promising and
can lead to new research. We have shown that the ANN-
based method can be successfully applied for the study of
the brain states associated with different interpretations of
ambiguous images. We have demonstrated not only the ability
of ANN to recognize EEG patterns corresponding to different
Necker cube interpretations, but also the relevance of ANN for
the detection of universal features of brain activity associated
with different interpretations of bistable stimuli. The latter has
been achieved by the application of ANN for the cross-subject
classification. Namely, the ANN being trained on EEG trials
data set of one subject has demonstrated high performance in
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the classification of analogous states in other subjects. This is
surprising because the ANN is usually considered as a “black
box” which is trained to effectively classify or detect features
in those datasets for which it is initially trained. In this case,
ANN is trained to learn very special features in order to
provide maximal efficiency for the concrete data. Nevertheless,
in our study the property of ANN to learn features invisible
for eye, has been used to reveal fundamental aspects of bistable
perception. In particular, the results of cross-subject classification
provided the evidence that all participants did exhibit common
brain states when perceiving left- or right-oriented Necker cube
interpretations.

In neuroscience, the task of revealing fundamental aspects of
brain dynamics always attracts a lot of attention. The features
detection of brain activity is usually based on the analysis of the
EEG signals time-frequency structure with the help of Fourier
transform (Gotman et al., 1973) and adaptive wavelet (Hramov
et al., 2015) transform. Along with these methods, there are
also other approaches used for quantitative classification and
feature extraction of the EEG patterns, such as e.g., discriminant
analysis and independent component analysis (Makeig et al.,
1996; Ungureanu et al., 2004; Hobson and Hillebrand, 2006).
However, the wavelet-based methods give better results for
classification and allocation of EEG patterns (Sitnikova et al.,
2009, 2014; Nazimov et al., 2013) than other methods.

Previous studies of ambiguous figures using EEG trials, event-
related potentials (ERP) and fMRI showed that perception of
bistable images was accompanied by activation of specific brain
areas and deactivation of others (Inui et al., 2000; Müller et al.,
2005; Kornmeier et al., 2007). In particular, Kornmeier and Bach
(2006) found a chain of ERP components during observation of
a Necker lattice led to spontaneous perceptual reversals. They
detected significant changes in the ERP in the occipital cortex (Oz
electrode position).

Based on these related works, we considered the time-
frequency structure of occipital EEG when the subjects exhibited
left- and right-oriented interpretations of the Necker cube in
order to understand the features of the related brain states.
However, our results of wavelet decomposition of the EEG have
not been able to reveal differences in the states associated with
distinct Necker cube interpretations (see Figure 11).

It was supposed that the waveform of the EEG signal
contains the most pronounced features of left- and right-
oriented interpretations of the Necker cube. In order to extract
characteristic shapes of the EEG signals, we estimated the
difference between ERPs corresponding to EEG trials associated
with left and right cube orientations, recorded from different
electrodes. For this purpose, we calculated the averaged EEG
traces of T = 1 s duration corresponding to the perception of
each type of the Necker cube for a particular subject, as follows

x̄L,Rp (t) =

NL,R
∑

i=1

(spi(t))

/

ML,R, (14)

where NL,R ≈ 100 is the number of perceptions of the left-
(L)/right-(R) oriented cube and p = 1, . . . P (P = 19) is the

EEG channel number. We observed high differences between
averaged signals x̄L,Rp (t) from different electrodes. To characterize
the features of the signal corresponding to left-/right-oriented
cube perception, we defined the averaged EEG difference traces
as 1p(t) = x̄Lp(t) − x̄Rp (t). The averaged EEG difference traces
from 11 electrode positions are presented in Figure 12 for subject
h = 4 who exhibited the best results in the accuracy of cross-
subject classification, i.e., who had the most pronounced EEG
features identified by the ANN.

At first sight, remarkable variability 1p(t) between EEG
traces belonging to different Necker cube perceptions exists
and can be revealed via the ERP analysis. However, closer
examination revealed that the earliest significant component is
positive difference 1 > 0 in the time interval (0.2, 0.4) sec and
negative difference 1 < 0 in (0.6, 0.8) s, most prominent in the
occipital left (O1) and right (O2) locations. The second effect
of the negative difference was more pronounced in the central
frontal electrode positions (Fz). Similar trends were observed
in the parietal, somatosensory, and temporal positions of the
electrodes (see Figure 12), but they were less pronounced.

Having summarized the results in the detection of the brain
states associated with left- and right-oriented interpretation
of bistable images, we can conclude that the analysis of ERP
evidences the difference between these two states appeared
in occipital lobe. This result is in agreement with previous
observations of Kornmeier and Bach (2006) who reported the
responsibility of occipital area for perception. Surprisingly, the
detailed time-frequency analysis of occipital EEG, based on
wavelet decomposition, does not give any further information
about distinctive features of these states, but, on the contrary,
enhances their similarity.

In contrast to the previous approaches, the ANN applied
in a cross-subject mode provides a strong evidence that the
brain difference between the brain states associated with left-
and right-oriented Necker cube interpretations does exist and
can be considered as a universal phenomenon for different
subjects. Moreover, compared to ERP study, the ANN finds
these differences very significant and therefore can be applied to
classify individual trials.

It should be noted that along with differences in operation of
ANN and ERP, there are some fundamental similarities in the
results obtained by these methods. In particular, according to
ERP we can conclude that the most significant EEG channels
for classification belong to the occipital cortex. Indeed, our
preliminary calculations with the same ANN topology for 4
subjects (h = 2, 3, 4, 12) showed that the accuracy of brain states
classification using only EEG channels in the occipital region
(P = 6: O1, O2, P3, P4, Cz, Pz) is not significantly worse than
using the complete set of channels (P = 19). However, the choice
of optimal EEG channels requires further investigation.

5. CONCLUSION

In this paper, we have proposed the use of an artificial neuronal
network for classification and automatic recognition of human
brain states associated with the perception of ambiguous images.
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FIGURE 12 | Averaged EEG difference traces 1(t) for subject h = 4 recorded from 11 electrodes.

From obtained experimental data, we optimized the ANN
architecture and achieved up to 95% accuracy in the classification
of the EEG patterns during perception of ambiguous images. We
have found particular features of the EEG patterns corresponding
to different interpretations of the Necker cube, typical for all
subjects, so that a single ANN trained on the EEG data set of
one person can classify with high quality the corresponding brain
states of a large group of people. Two sets of experiments, with
key pressing and without key pressing, have demonstrated that
the motor activity (real or imaginary) had no influence on the
results in the cube classification.

We firmly believe that the significance of our results is
not limited to visual perception of the Necker cube images.
We are sure that the proposed experimental approach and
developed computational technique based on the ANN can be
applied for studying and classifying different brain states using
EEG and MEG data, and can be useful in future research
in the field of cognitive and pathological brain activity. The
developed approach provides a solid experimental basis for
further understanding of brain functionality. The rather simple
way to quantitatively characterize brain activity related to
perception of ambiguous images seems to be a powerful tool,

which may be used in neurotechnology, e.g., for the brain-
computer interface (BCI) task (Bell et al., 2008; McFarland
et al., 2017) and in medicine for diagnostic and prognostic
purposes (Ovchinnikov et al., 2010; Maksimenko et al., 2017).
The efficiency of BCI is known to be defined by the ability of
the operator to generate certain stable EEG patterns. This means
that the BCI is affected by inter-subject variability (Ferrante
et al., 2015). In this respect, our results suggest possibility for
the development of an unified ANN-based classifier, which in
turn can be used for building BCI for multiple and untrained
persons (Blankertz et al., 2007). We expect that the results of
this work will be interesting and useful for scientists carrying
out interdisciplinary research at the cutting edge of physics,
mathematics, neurophysiology, and medicine.
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